
AN APPROACH TO A COMPACT JTRS SCA CORE FRAMEWORK FOR
HANDHELD RADIOS

Dr. John W. Cruz, Tony Davis,
Michael Mario, Gerald Rolon

ITT Industries Aerospace/Communications

Engineering Center
100 Kingsland Road
Clifton, New Jersey

Abstract

The JTRS Core Framework (CF) based on the Secure Communications Architecture
Specification (SCA, currently in version 2.2) is a key enabler for the Software Defined
Radio (SDR). By defining a set of common interfaces and standardized waveform control
services the portability of radio software across multiple platforms is achievable.
Portability and reuse are two of the key payoffs of the SDR concept implemented in JTRS.
The handheld radio domain with its severe power, size and memory limitations present a
challenge to the SDR developer who wants to gain the benefits of the CF common services
and standard interfaces. The memory, storage and potential processing requirements of the
CORBA ORB and services, an operating system robust enough to host CORBA, the CF
software and the waveform itself must be addressed to create an effective solution in the
handheld radio domain.

Introduction

The practical adoption of the SDR approach based on the Core Framework, shown in
Figure 1, is potentially limited in handheld or smaller radios by the memory overhead
required for the implementation of the complete CF. Typical designs provide 32 to 64 M
per GPP. Allocation of this memory between OS, CORBA, the C++ library and waveform
applications imposes a memory ceiling on the Core Framework. Sizing issues for other
infrastructure components of the SDR (OS and ORB) are addressed through technology
evolution of commercially available products. Optimization of executable sizes under
Linux is addressed quite extensively in the literature. The approach to reduce the size of the
common CF itself is largely in the hands of the SDR community. We cover some of the
approaches considered and implemented in developing a Lightweight Core Framework
targeted for the handheld SDR environment.

Core Framework Software Architecture Overview

Ease of technology insertion, Software Reuse and waveform software porting are feasible
if the software architecture hides low level system details. The Software Communications
Architecture, SCA1, was created by radio developers under contract to the US government
Joint Tactical Radio System (JTRS) Program Office (JPO). The SCA hides low level
hardware and software details via:

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

- Encapsulation of hardware dependencies exclusively in SCA Device software which
presents common interfaces defined in IDL (the CORBA Interface Design Language)

- The use of CORBA to hides details of the architecture, particularly the number and
type of processors their operating systems and communication mechanisms

- A standard mechanism to describe system and application configuration, the SCA
Domain Profile.

Core Framework Components

As defined in SCA 2.2 1 , the Core Framework is a software architectural concept defining
the essential set of open Interfaces that provide for the deployment, management,
interconnection and intercommunication of software application components in embedded,
distributed-computing communication systems. The Core Framework components are
shown in Figure 1 labeled as the CF Services and Applications, a subset of which execute
on each CORBA capable processor in the system.

The primary software components of the SCA 2.2 Core Framework that are candidates for
optimization are:

- Operating Environment

- POSIX Operating System (COTS)
- CORBA Middleware (COTS)
- CORBA Services

- Naming Service (COTS/custom)
- Event Service (COTS)

- Core Framework
- Base Application Interfaces (App)

- Port, Lifecycle, TestableObject, PortSupplier, PropertySet, Resource, Resource Factory
- Framework Control Interfaces (App/CF)

- Application, ApplicationFactory, DomainManager, Device, LoadableDevice,
ExecutableDevice, AggregateDevice, DeviceManager

- Framework Services Interfaces (CF)
- File, FileSystem, FileManager, Timer

ITT has developed a Core Framework and has tested it extensively on Windows, x86 Linux
and ARM Linux and has used this as a baseline for developing the Lightweight Core
Framwork described in this paper.

Certain of the CF components shown above are potential candidates for size optimization
to produce a Lightweight Core Framework. ITT chose the Linux OS for its customization
potential and ORB Express for its size and real-time performance on the target processors.
In a typical implementation of the CF, the Base Application Interfaces are uniquely
implemented as part of the application thus do not contribute to the CF size while most of
the CF operational software is part of the Framework Control Interfaces and Framework
Services Interfaces. These areas are the focus of this investigation.

The ITT Lightweight Core Framework (LCF) is implemented as a set of dynamically
loaded shared libraries, .DLL in Windows or .so files in UNIX. This approach avoids the

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

duplication of memory images and also permits selection of the CF components as
appropriate to each processor, minimizing memory use.

Approaches to Lightweight Core Framework Size Optimization

There are at least two conceptual approaches to reducing the size of the CF:
- Elimination of Functionality
- Optimization of Components.

Elimination of Functionality. The primary advantage of this approach is that it can result
in substantial reductions in the memory footprint with the severe disadvantage that the
result may be incompatible with the complete Core Framework and thus defeat the
interoperability goal of the CF.

Optimization of Components. Conversely, the second approach may be stingier in
providing a footprint reduction but preserves application portability among all CFs. We
believe it is feasible to follow this second approach in creating a Lightweight Core
Framework since preserving portability between both handheld and larger SDR platforms
is a critical goal of JTRS. Near term technology developments will also facilitate
development of smaller handheld radios with sufficient memory to permit the utilization of
a complete interoperable core frameworks.

In order to select the most productive approach to CF footprint reduction, an initial
measurement of the CF sizing was obtained and is shown in Table 1. The compiler
optimizations used were -strip-debug and -strip-unneeded flags. The size optimization flag
-Os were found to have a neglibible impact with the GNU x86 and ARM compilers used
(<0.01%) and was not used. Note that the file size is a very close approximation of code
size when symbols are stripped using the above compiler flags. An excellent overview of
optimization in a Linux environment is presented in Reference 3.

XML Parser. Table 1 shows that the software footprint related to XML parsing is quite
large, the two libraries (libxmllib.so and libxerces-c1_5_1.so) consume about 42 % of the
memory required for the ARM Core Framework. Basically libxerces parses the XML
Domain Profile and libxmllib allows CF components to extract the parsed information.
Xerces is a widely used open source validating parser. Identification of a memory efficient
approach to processing the XML Domain Profile has high payoff for the LCF.

Log Service. The 153 k footprint of the Log Service, optional in SCA 2.2, is quite small,
thus omitting this optional component does not have high payoff.

Naming Service. The naming service shown in the Table is a fully functional custom
lightweight implementation developed by ITT specifically for optimized performance with
the smaller number of registered objects typical of an embedded Radio. It is fully
compliant with the OMG specification. Its small size (600k) represents a substantial
footprint saving over COTS naming services that can be up to several megabytes in size.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

FileSystem and FileManager. The footprint of these two services is small, only about 2%
of the total. Therefore, application use of the native file system will not contribute
significantly to the CF footprint and would severely degrade application portability.

Selection of High Payoff CF Components for Optimization

Table 2 rates the approaches to developing a Lightweight Core Framework based on the
initial size measurements. High payoff approaches are those which result in a substantial
footprint reduction and are relatively easy to implement. All High payoff approaches were
also required to maintain compatibility between LCF and complete CF functionality.

Compiler Optimization Flags
This obvious approach by itself resulted in a modest footprint reduction.

Naming Service
Implementation of naming service is straightforward and offers the reduction in footprint as
shown, to about 600 k on the ARM and. The implementation is fully compliant with the
OMG CORBA Naming Service Specification3.

XML Parsing
Alternatives were examined to parse the Domain Profile offline or online. Offline parsing
may offer more potential size reduction, but requires definition of an interface between
offline parsing and online processing of the information. ITT had available a small XML
parser which is non-validating. Taking this approach, validation is either done when XML
is written using a tool like- xmlspy®4, or in offline operation with a version of the radio
built with a validating XML parser. In either case, XML introduced into the SDR must be
pre-validated. XML files themselves are small compared to the executable sizes.

Future LCF Developments

Currently under investigation is the difference in the size of CF components between the
ARM and x86 implementations. The impact of the C++ STL on the size of our LCF
implementation another one of areas we wish to investigate further.

Conclusions

By optimizing some of the largest components including the NamingService and the XML
Parser for the Domain Profile, we have developed and tested a Lightweight Core
Framework compliant with SCA 2.2 with a total footprint under 10 MBytes including ORB
on the ARM platform. The size of the LCF on the x86 platform is under 4 Mbytes. This
memory footprint is and compatible with the memory availability in a handheld radio. The
availability of a lightweight CF is a key enabler to achieve the JTRS goal of waveform
portability between platforms with different memory resources, a key to the successful
SDR.

References

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

1. Software Communications Architecture Specification, MSRC-5000SCA, V2.2 17
November 2001

2. Optimizaing Embedded Linux, Todd Fischer, Dr. Dobbs Journal, May, 2002
3. OMG Naming Service Specification, V2.2, see for this specificaiton.

http://www.omg.org/technology/documents/formal/naming_service.htm
4. See http://www.xmlspy.com/ for information about this tool suite.

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

 Component Linux x86

-strip -debug
(in kbytes)

Linux x86
-strip -
unneeded
(in kbytes)

Linux ARM
-strip
-debug
(in kbytes)

Linux ARM
-strip
-unneeded
(in kbytes)

Notes

Gppdevice 213 166 393 354
Libcfstubs.so 881 690 2864 2687 Output of IDL

compiler for CF
Libdevicemanager.so 181 132 294 240 CF Device Manager
Libdomainmanager.so 462 356 678 585 CF Domain Manager
Libfilemanager.so 104 73 131 99 CF File Manager
Libfilesystem.so 115 90 154 131 CF File System
liblog.so 157 123 193 162 CF Log Service
libutils.so 267 213 314 271 Implementation

specific utilities
libxmllib.so 1138 954 1420 1298 Interface to parser
Subtotal, Base CF
(kbytes)

3518 2797 6441 5827
XML Parsers
libxerces-c1_5_1.so 2463 2331 2721 2445 Open source XERCES

parser for Domain Profile
Libparserlite 140 124 953 953 Lightweight Parser
ORB
libOEorb.so 580 580 ORB Express RT_2.3.5

config_rt_shared
libOEorb.so - - 2735 2527 ORB Express

RT_2.5.0_ESC
config_rt_full_shared

 libOEorb.so - - 832 832 ORB Express
RT_2.5.0_ESC
config_rt_fast_shared

 libOEtcp.so 154 154 90 75

Naming Service
Libcfnamingservice.so 179 179 445 399 Lightweight Naming

Service
oenames_server 4076 3452 - - No available on ARM

at the time
Totals
"Standard" CF 10791 9314 12432 11273 Base CF, Full Parser,

Naming Service,
config_rt_full_shared

Lightweight CF 4571 3834 8761 8086 Base CF, Lightweight
Parser, Lightweight
Naming Service,
config_rt_fast_shared

Table 1. Size of Core Framework
Components

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

Figure 1 JTRS Core Framework

Applications
Core Framework (CF)

Commercial Off-the-Shelf (COTS)
Operating

Environment (OE)

 Red Hardware Bus Black Hardware Bus

CF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Stacks & Serial Interface Services
Board Support Package (Bus Layer)

Operating System

Core Framework IDL

Non-CORBA
Modem

Components

Non-CORBA
Security

Components

Non-CORBA
 I/O

Components

RF

MAC API LLC/Network API LLC/Network API

Modem
Components

Link, Network
Components

Security
Components

Modem
Adapter

Security
Adapter

Security
Adapter I/O

Adapter
 I/O

Components Link, Network
Components

Security API

Physical API

I/O API

(“Logical Software Bus” via CORBA)

CF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Stacks & Serial Interface Services

Board Support Package (Bus Layer)

Operating System

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

Approach Expected

Impact
Complexit
y

Measured
Impact

Notes

Lightweight Naming Service High Low 4 M / 0.2 M X86, only Naming Service
not available on ARM

XML Parsing

Offline Parsing High Moderate N/A

Online Parsing

Custom Parser High Moderate 2.3 M / 0.12 M X86

 2.4 M / 0.95 M ARM

COTS Parser Moderate Low

Code Optimization Strategies

Global Optimization High Low 7 M / 5.5 M X86 Compile flags

 14 M / 12 M ARM Compile flags

Module Optimization Moderate High Although it does not appear to
have high impact, this
strategy should be part of
maturation of the LCF

Unload components after startup Moderate Moderate N/A This dynamic strategy is
easily made part of the
waveform startup sequence.

Eliminate Optional CF Components Low Moderate N/A The size contribution of
optional components is not a
major contributor to the CF
size.

Use Native File System Low Moderate N/A Very Undesireble Introduces
serious Compatibility
Problems

Eliminate Optional Features within CF
Components

Low Moderate N/A The size contribution of
optional features is not a
major contributor to the CF
size.

Eliminate unneeded interfaces Low High N/A It is not possible to determine
a priori which interfaces are
not required, thus undesirable
compatibility problems are
introduced.

Notes:
Impact:

Low: < 100k
Moderate: > 100k , <1M
High: > 1M

Complexity:

Low: limited development
Moderate: some development
High: extensive analysis/SW
development

Table 2 Lightweight Core
Framework Tradeoffs

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

Proceeding of the SDR 02 Technical Conference and Product Exposition. Copyright © 2002 SDR Forum. All Rights Reserved

	Introduction
	Core Framework Software Architecture Overview
	Core Framework Components
	Approaches to Lightweight Core Framework Size Optimization
	Selection of High Payoff CF Components for Optimization

	Conclusions
	References

